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The (continuous) dynamic systems

Kinematics studies the motion of objects without reference to its causes.

Dynamics is concerned with the study of forces and torques and their effect on
motion.
System: A set of interdependent, interacting and collaborating elements or segments
forming a unified whole.
At each point in the phase space there is a vector giving the direction of the
infinitely small displacement of that point.
We say then that all these vectors form a dynamic system.
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The dynamics of iterated complex functions

Complex dynamics is the study of dynamic systems defined by iteration of
functions on complex number spaces.

Complex analytic dynamics is the study of the dynamics of specifically analytic
functions.
The iteration of complex mappings has a remarkable history, although it has
undergone rapid development in the past thirty years.
After a period of relative dormancy, the field was rejuvenated in 1980 thanks to
some intriguing computer graphics images of Benoit Mandelbrot as well as major
new mathematical advances due to Adrien Douady, John H. Hubbard, Dennis
Sullivan and others.
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(Discrete) dynamic systems

For every 𝑘 ∈ ℕ, we abbreviate as 𝑓𝑘 the 𝑘-fold composition 𝑓 ∘ 𝑓 ∘ ⋯ ∘ 𝑓 , where 𝑓0 is
the identity function. There should be no confusion with the ordinary power,
which will be explicitly written as [𝑓(𝑧)]𝑘.

Let 𝑆 ⊂ ℝ𝑛 and let 𝑓 ∶ 𝑆 → 𝑆 be a continuous function. An iterative scheme {𝑓𝑘} is
called a discrete dynamic system.
We are interested in the behaviour of the sequence of iterates, or orbits, {𝑓𝑘(𝑥)} for
various initial points 𝑥 ∈ 𝑆, and are often especially interested in what happens to
the iterates when 𝑘 is large.
The forward orbit of a point 𝑥 ∈ 𝑋 is the set

𝑂+(𝑥) = {𝑓𝑛(𝑥) ∶ 𝑛 ≥ 0, 𝑓0(𝑥) = 𝑥}.
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Complex variables

Definition
Let 𝑈 be an open set in ℂ. A complex function 𝑓 ∶ 𝑈 → ℂ is differentiable or analytic at a
point 𝑎 ∈ 𝑈, if the derivative

𝑓 ′(𝑎) = lim
𝑧→𝑎

𝑓(𝑧) − 𝑓(𝑎)
𝑧 − 𝑎 (𝑧 ∈ 𝑈)

exists. We call 𝑓 analytic on 𝑈, or say that 𝑓 ∶ 𝑈 → ℂ is analytic, if 𝑓 is analytic at each
point of 𝑈 .

V. Drakopoulos Complex Analytic Dynamics 13/55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preliminaries
Complex Analytic Dynamics

Iterative methods

Complex Analysis
Julia and Fatou sets
The Mandelbrot set

Periodic points

A periodic point of period 𝑛 of the transformation 𝑓 ∶ 𝑋 → 𝑋 is a point 𝑥 ∈ 𝑋 such
that 𝑓𝑛(𝑥) = 𝑥 for some 𝑛 ∈ ℕ.
A periodic point of 𝑓 of period 1 is called a fixed point of 𝑓 .
The orbit of a periodic point of 𝑓 is called a cycle or periodic orbit of 𝑓 .
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The classification of periodic points

Suppose that 𝜁 ∈ ℂ is a fixed point of an analytic function 𝑓 and 𝜆 = 𝑓 ′(𝜁). Then 𝜁 is:
(a) superattractive, if 𝜆 = 0;
(b) attractive, if 0 < |𝜆| < 1;
(c) repulsive, if |𝜆| > 1;
(d) rationally indifferent, if 𝜆 is a root of unity;
(e) irrationally indifferent, if |𝜆| = 1, but 𝜆 is not a root of unity.
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Theorem
If deg(𝑝) = 𝑛 > 0, then 𝑧 = ∞ is a superattractive fixed point of 𝑝.

If 𝑓 is invertible we can define the whole orbit of 𝑥 as
𝑂(𝑥) = {𝑓𝑛(𝑥) ∶ 𝑛 ∈ ℤ, 𝑓0(𝑥) = 𝑥}

and the backward orbit of 𝑥 as
𝑂−(𝑥) = {𝑓−𝑛(𝑥) ∶ 𝑛 ≥ 0, 𝑓0(𝑥) = 𝑥}.
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Definition
Let 𝑓 ∶ ℂ → ℂ be a function. If 𝑎 is a (super)attractive periodic point of 𝑓, we write

𝐴(𝑎) = {𝑧 ∈ ℂ ∶ lim
𝑛→∞

𝑓𝑛(𝑧) = 𝑎}

for the attractive basin or stable set or basin of attraction of 𝑎, i.e. the basin of attraction
is the set of points which approximate a given (super)attractive periodic orbit.

Remarks
Obviously, 𝑂−(𝑎) ⊂ 𝐴(𝑎) and 𝐴(𝑎) ≠ ∅, because 𝑎 ∈ 𝐴(𝑎). We observe that if 𝑎 is an
attractive fixed point of 𝑓 , then 𝑓𝑘(𝑧) ∈ 𝐴(𝑎) for some 𝑘 ∈ ℕ implies 𝑧 ∈ 𝐴(𝑎).
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Theorem
A basin of attraction is an open set.

𝐴(𝑎)

'
&

$
%

𝑓−𝑛(𝐷)

p𝑧 -𝑓𝑛 p 𝑓𝑛(𝑧)
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𝐷
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Example

Let 𝑓(𝑧) = 𝑧2; so that 𝑓𝑛(𝑧) = 𝑧2𝑛 for 𝑧 ∈ ℂ. This is the simplest function of type
𝑓(𝑧) = 𝑧2 + 𝑐 and it will prove instructive to see how the geometry changes, sometimes
dramatically, as 𝑐 is altered. In our case 𝑐 = 0 the fixed points are a repeller 𝑧 = 1, since
𝑓′(1) = 2 and a superattractor 𝑧 = 0.

The Julia set of 𝑧2.
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The dynamic dichotomy
About 1918–1920, the French
mathematicians P. Fatou and G. Julia,
developed, independently of each
other, the theory of rational iteration,
their main tool being Montel’s
Normality Criterion.

Pierre Joseph Louis Fatou (1878–1929)

They discovered the dichotomy of the
Riemann sphere into the sets now
bearing their names.

Gaston Maurice Julia (1893–1978)
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Several Julia sets
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Quasi self-similarity

A looser form of self-similarity; the fractal appears approximately (but not exactly)
identical at different scales.

0.4 0.6 0.8 1 1.2 1.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.9 1 1.1 1.2 1.3 1.4
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

1.2 1.25 1.3 1.35 1.4

-0.45

-0.4

-0.35

-0.3
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𝑐 = −0.5 + 0.5𝑖
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Möbius transformations

A transformation 𝑅∶ ℂ → ℂ of the form

𝑅(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ,

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ with

𝑑𝑒𝑡 [ 𝑎 𝑏
𝑐 𝑑 ] ≠ 0 ⇔ 𝑎𝑑 − 𝑏𝑐 ≠ 0 ⇔ 𝑎𝑑 ≠ 𝑏𝑐,

is called a bilinear, linear fractional or Möbius transformation.

If 𝑐 ≠ 0, then 𝑅(−𝑑/𝑐) = ∞ and 𝑅(∞) = 𝑎/𝑐. If 𝑐 = 0, then 𝑅(∞) = ∞. Its inverse is

𝑅−1(𝑧) = 𝑑𝑧 − 𝑏
−𝑐𝑧 + 𝑎,

if 𝑐 ≠ 0.
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Converting quadratics

A quadratic polynomial
𝑞(𝑧) = 𝑎𝑧2 + 2𝑏𝑧 + 𝑑 (𝑎 ≠ 0),

where 𝑎, 𝑏, 𝑑 ∈ ℂ, may be simplified by an affine change of coordinates
𝑤 = Φ(𝑧) = 𝑎𝑧 + 𝑏 (𝑎 ≠ 0)

to the form
𝑝𝑐(𝑧) = 𝑧2 + 𝑐,

where 𝑐 = 𝑎𝑑 − 𝑏2 + 𝑏. We show how the process works with a commutative diagram

ℂ
𝑞

⟶ ℂ
Φ−1 ↑ ↓ Φ

ℂ
𝑝𝑐⟶ ℂ

where Φ is a Möbius transformation, to mean that all compositions taking us from one
given point to another are equal.
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Rational functions

A rational map 𝑅∶ ℂ → ℂ is of the form 𝑅 = 𝑃/𝑄, where 𝑃 and 𝑄 are polynomials
without common factors and so without common roots.
The degree of 𝑅 is defined by

deg(𝑅) = max{deg(𝑃 ), deg(𝑄)}.
How is 𝑅(∞) defined?
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Critical points

In order to understand the dynamics of all complex quadratic polynomials, it is
enough to study the class of quadratic polynomials of the form 𝑧 ↦ 𝑧2 + 𝑐, 𝑐 ∈ ℂ.

The value 𝑤 is a critical value of 𝑓 , if the equation 𝑓(𝑧) = 𝑤 has a solution whose
multiplicity is greater than one.
Such a solution 𝑐 is called a critical point.
Using local coordinates and provided that 𝑓 is analytic, this is equivalent to the
condition 𝑓 ′(𝑐) = 0 (at least when 𝑐 ≠ ∞).
The unique critical point of the polynomial

𝑝𝑐(𝑧) = 𝑧2 + 𝑐, 𝑐 ∈ ℂ
is 0, with 𝑐 as its critical value (parameter).
The forward orbits of the critical points of a rational map determine the general
features of the global dynamics of the map
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Starting from 0, we obtain the sequence of complex numbers
{0, 𝑝𝑐(0), 𝑝𝑐(𝑝𝑐(0)), 𝑝𝑐(𝑝𝑐(𝑝𝑐(0))), …}.

By adopting the previous symbolism we get the sequence of complex numbers
{0, 𝑝𝑐(0), 𝑝2

𝑐(0), 𝑝3
𝑐(0), …} or {0, 𝑐, 𝑐2 + 𝑐, (𝑐2 + 𝑐)2 + 𝑐, …}.

For instance, if 𝑐 = 1 we have the sequence 0, 1, 2, 5, 26, … which tends to infinity,
whereas for 𝑐 = −1 we have 0, −1, 0, −1, 0, … which is bounded.
The orbit of the critical point of 𝑝𝑐 for some 𝑧 ∈ ℂ tends to infinity while for others
tends to some complex number.
These different sets containg the convergent points are separated from some other
set which usually has a nonintegral dimension.
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𝑐(0), 𝑝3
𝑐(0), …} or {0, 𝑐, 𝑐2 + 𝑐, (𝑐2 + 𝑐)2 + 𝑐, …}.
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whereas for 𝑐 = −1 we have 0, −1, 0, −1, 0, … which is bounded.

The orbit of the critical point of 𝑝𝑐 for some 𝑧 ∈ ℂ tends to infinity while for others
tends to some complex number.
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Julia sets of quadratics

In what follows, 𝑝𝑐(𝑧) = 𝑧2 + 𝑐, where 𝑧, 𝑐 ∈ ℂ and 𝐽(𝑝𝑐) = 𝐽𝑐.

Theorem
𝑝𝑐 has at most one finite attractive fixed point or attractive cycle.

Theorem
If lim

𝑛→∞
𝑝𝑛

𝑐 (0) ≠ ∞, then 𝐽𝑐 is connected.

Theorem
If lim

𝑛→∞
𝑝𝑛

𝑐 (0) = ∞, then 𝐽𝑐 is totally disconnected.

V. Drakopoulos Complex Analytic Dynamics 30/55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preliminaries
Complex Analytic Dynamics

Iterative methods

Complex Analysis
Julia and Fatou sets
The Mandelbrot set

The dichotomy between the 𝑐 parameter values of 𝑝𝑐 for which either convergence or
divergence is implied, was studied by Mandelbrot.

Definition

ℳ = {𝑐 ∈ ℂ ∶ lim
𝑛→∞

𝑝𝑛
𝑐 (0) ≠ ∞}

= {𝑐 ∈ ℂ ∶ {𝑝𝑛
𝑐 (0)}∞

𝑛=1 is bounded}.
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Douady–Hubbard
The ℳ set is connected.
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Parameter and dynamic spaces

The Mandelbrot set was the first set we have defined in a parameter space.

Each point 𝑐 ∈ ℳ represents a different dynamic system.
The filled-in Julia set consists a set example defined in the dynamic space.

Definition
The filled-in Julia set, 𝐾(𝑓), of 𝑓 is the set of points whose orbits do not tend to infinity, i.e.,
𝐾(𝑓) = {𝑧 ∈ ℂ ∶ lim𝑛→∞ 𝑓𝑛(𝑧) ≠ ∞}

= {𝑧 ∈ ℂ ∶ {|𝑓𝑛(𝑧)|}∞
𝑛=0 is bounded}.
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San Marco dragon

The fractal 𝐽(−3/4, 0), where 𝐽 is the Julia set. It slightly resembles the Mandelbrot set.
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Finding roots

Using an iterative method to find the roots of a polynomial equation

𝑝(𝑧) = 𝑎𝑑𝑧𝑑 + 𝑎𝑑−1𝑧𝑑−1 + ⋯ + 𝑎0, 𝑎𝑑 ≠ 0

where 𝑝 ∶ ℂ → ℂ is a complex polynomial of a complex variable, is identical to
computing individual orbits of the dynamic system generated by the method.
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Questions

What is the open set of all initial values for which iteration sequence converges to a
given root?
For what initial point on the extended complex plane will the sequence not
converge at all?
Is it possible that iteration sequence converges to points or cycles other than the
desired roots?
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Definition

The Newton-Raphson’s iterative method for finding the complex roots of the equation
𝑓(𝑧) = 0, where 𝑓 is an arbitrary function, is

𝑁(𝑧) = 𝑧 − 𝑓(𝑧)
𝑓 ′(𝑧)

for 𝑓 ′(𝑧) ≠ 0.
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Remarks

The roots of 𝑝(𝑧) correspond to the finite fixed points of 𝑁𝑝(𝑧).
The point at infinity is a fixed point of 𝑁𝑝 and since 𝑁 ′

𝑝(∞) = 𝑑/(𝑑–1), it is
repulsive.
The derivative of 𝑁𝑝 is

𝑁 ′
𝑝(𝑧) = 𝑝(𝑧)𝑝′′(𝑧)

[𝑝′(𝑧)]2 ,

and therefore, the simple roots of 𝑝(𝑧) are superattractive fixed points of 𝑁𝑝(𝑧).
In a neighbourhood of its superattractive fixed points, the algorithm is locally
conjugate to 𝑧 ↦ 𝑧𝑘 for some 𝑘 > 1. Thus, local convergence is very rapid.
For a generic polynomial of degree 𝑑, the Newton’s map is a rational map of degree
𝑑. When the polynomial has multiple roots, deg(𝑁𝑝) < 𝑑.
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Multiple roots of 𝑝

They are attractive fixed points, but not superattractive.
In fact,

𝑁 ′
𝑝(𝑧)∣𝜉 = 𝑚 − 1

𝑚 = 1 − 1
𝑚

where 𝜉 is the root of multiplicity 𝑚.
The rate of attraction (speed of convergence) is linear and the algorithm is not
very effective in this case.
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Newton’s method for quadratics

We have seen that any quadratic polynomial may be reduced to the form
𝑝𝑐(𝑧) = 𝑧2 − 𝑐 (the minus sign is convenient here) by an affine change of coordinates.
We determine for Newton’s iterative method the attractive basin of each complex
root ±√𝑐.
Here we iterate with the rational function

𝑁(𝑧) = 𝑧 − 𝑝𝑐(𝑧)
𝑝′𝑐(𝑧) = 𝑧2 + 𝑐

2𝑧 .
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Notice that, apart from ∞, the fixed points of 𝑁(𝑧) are the roots ±√𝑐, as we would
expect.
Let us use a Möbius transformation to map the dynamics to an equivalent system
which is much easier to handle.
It is a good idea to send ±√𝑐 to the points ∞, 0, respectively, which is accomplished
for example by

𝑤 = Φ(𝑧) = 𝑧 + √𝑐
𝑧 − √𝑐 .

The inverse is
Φ−1(𝑤) = −𝑤√𝑐 − √𝑐

−𝑤 + 1 = √𝑐 𝑤 + 1
𝑤 − 1.
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If 𝑁(𝑧) becomes 𝑀(𝑤), then

𝑀(𝑤) = Φ ∘ 𝑁 ∘ Φ−1(𝑤) = Φ ∘ 𝑁 (√𝑐 𝑤 + 1
𝑤 − 1)

= Φ (√𝑐 𝑤2 + 1
𝑤2 − 1) = (𝑤2 + 1)/(𝑤2 − 1) + 1

(𝑤2 + 1)/(𝑤2 − 1) − 1
= 𝑤2.

We already know that 𝐽(𝑀) = 𝑆1, with interior 𝐴(0) and exterior 𝐴(∞). Tranforming
back to the 𝑧−plane we obtain:
Φ−1(1) = ∞, therefore Φ−1(𝑆1) is a straight line.
Φ−1(−1) = 0, therefore this line contains the origin.
Φ−1(𝚤) = −𝚤 √𝑐, a complex number at right angles to √𝑐.
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Thus the Julia set of 𝑁 , 𝐽(𝑁) = Φ−1(𝑆1), is the perpendicular bisector of the line
segment joining −√𝑐 to √𝑐. Further, we conclude that 𝐴(±√𝑐) are the half-planes on
opposing sides of 𝐽(𝑁).
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Complexity: Fractal basin boundaries
In the Julia set of Newton’s function for the iterative solution of 𝑧3 = 1, every point is
3-cornered. That is, every point is in the boundary of each root’s basin of attraction

The Julia set of the 𝑁𝑝3 method
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The convergence domain of 𝑧3 − 1 = 0 with Newton’s method and 𝑓 ′(𝑧) ≠ 0.
With progressive enlargements we again discern the phenomenon of self-similarity.
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Laguerre iterative function

𝐿(𝑧) = 𝑧 − 𝜈𝑓(𝑧)
𝑓 ′(𝑧) + {(𝜈 − 1)2[𝑓 ′(𝑧)]2 − 𝜈(𝜈 − 1)𝑓(𝑧)𝑓 ′′(𝑧)}1/2 , (1)

where the argument of the root is to be chosen to differ by less than 𝜋/2 from the
argument of (𝜈 − 1)𝑓 ′(𝑧). Eq. 1 can be written in equivalent form as

𝐿(𝑧) = 𝑧 − 𝜈[𝑓(𝑧)/𝑓 ′(𝑧)]
1 + {(𝜈 − 1)2 − 𝜈(𝜈 − 1)[𝑓(𝑧)𝑓 ′′(𝑧)/(𝑓 ′(𝑧))2]}1/2 . (2)

The iteration (2) for 𝜈 = 2 becomes

𝐿2(𝑧) = 𝑧 − 2[𝑓(𝑧)/𝑓 ′(𝑧)]
1 + {1 − 2[𝑓(𝑧)𝑓 ′′(𝑧)/(𝑓 ′(𝑧))2]}1/2 . (3)

The convergence is cubic to a simple root and linear to a multiple
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Basins of attraction for the roots of 𝑧𝑛 = 1

𝐿(𝑧) = 𝑧 𝑧−𝑛/2 + (𝑛 − 1)
𝑧𝑛/2 + (𝑛 − 1) .

For even integer 𝑛 it is rational, for odd 𝑛 it is algebraic. The fixed point condition
𝐿(𝑧) = 𝑧 implies that

𝑧𝑛–1 = 0 or
𝑧 = 0, repulsive periodic point of period 2
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Remarks

When 𝑛 = 2, convergence occurs in one iteration for any starting point 𝑧0 ∈ ℂ. If
ℜ(𝑧0) > 0, or if ℜ(𝑧0) = 0 and ℑ(𝑧0) ≥ 0, then 𝐿(𝑧0) = 1; otherwise 𝐿(𝑧0) = −1.
When 𝑛 ≥ 3, 𝑧 = 0 is a repelling periodic point of period 2, because 𝐿(0) = ∞ and
𝐿(∞) = 0. For any other starting point convergence to the roots of 𝑓𝑛 occurs for
𝑛 = 3 and 𝑛 = 4.
The situation is much more interesting for 𝑛 ≥ 5.
In this case, the {0, ∞} two-cycle becomes attracting and the Lebesgue measure of
the roots’ basins of attraction approaches 0 as 𝑛 → ∞.
More specifically, these basins are subsets of an annulus whose radii 𝑟1 and 𝑟2
satisfy 0 < 𝑟1 < 1 < 𝑟2 = 1/𝑟1 < (𝑛 − 1)2/(𝑛−4), so both radii converge to 1 as 𝑛 → ∞.
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The case with 𝑛 = 16 is shown with
the 16 roots shown as dots along the
unit circle, and two grey annuli that
vaguely outline the boundary of the
union of the basins of attraction of
the roots

Laguerre iteration converges to the
roots for any starting point between
the two grey annuli, but it
approaches the {0, ∞} two-cycle for
any starting point inside the smaller
grey annulus or outside the larger
grey annulus
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Symmetry effects

Theoretical considerations and the numerical results show that the Laguerre
iteration has similar dynamics as for the case with 𝑓𝑛(𝑧) = 𝑧𝑛 − 1 in the previous
section: in both cases the union of the basins of attraction to the roots is a subset of
an annulus centered at the origin and {0, ∞} is an attracting two-cycle.
Let us consider the polynomial 𝑝𝑟(𝑧) = (𝑧 − 𝑟)(𝑧4 + 𝑧3 + 𝑧2 + 𝑧 + 1) in which 𝑟 is
viewed as a perturbation of the real root 𝑧∗ = 1 of 𝑓5(𝑧) = 𝑧5 − 1.
We present the results of small perturbations with 𝑟 ∈ ℝ and the consequent
changes in the roots’ basins of attraction.
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Example

We show the original basin with 𝑟 = 1 and two small perturbations: one with
𝑟 = 1.00060 and one with 𝑟 = 1.00064. Notice how sensitive the results are to these two
perturbations. In the middle image the union of the basins of attraction has slowly
grown and slightly changed its shape. When changing 𝑟 from 1.00060 to 1.00064, there
is a sudden change and as far as we could computationally check, the basins visibly
cover the complex plane.

(a) (b) (c)
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Conclusions

Τhere are polynomials for which convergence to the roots, at least when exact
arithmetic is used, will not take place due to the existence of attracting cycles
When the symmetry of the roots of unity is slightly perturbed, convergence again
seems to take place from much or all of the complex plane
Unlike with rational iteration maps, under Laguerre’s iteration the boundaries of
the individual roots’ basins of attraction do not correspond to the Julia sets of the
polynomials.
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