Popla with discrice

Χάος γύρω από μιγαδικά ασταθείς περιοδικές τροχιές σε 3D Χαμιλτονιανά συστήματα

> Πάνος Πάτσης ΚΕΑΕΜ, Ακαδημίας Αθηνών

QENTHAT THAPPENS FOR X > 16.77 Point & accum of 2mm

Popla with discrice

In 2D systems there is no Complex Instability

QUINT THAPPENS FOR X > 16.77 Point of account of 2 minut LOCK > LIKE A MESS!

Equations of motion are derived from the Hamiltonian

$$H \equiv \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 \right) + \Phi(x, y) - \frac{1}{2} \Omega_s^2 (x^2 + y^2) = E_J \tag{4}$$

where (x, y) are the coordinates in a Cartesian frame of reference corotating with the spiral with angular velocity Ω_s . $\Phi(x, y)$ is the potential in Cartesian coordinates, E_J is the numerical value of the Jacobian integral and dots denote time derivatives.

Effective potential takes care of fictitious forces

 $\mathsf{E}_\mathsf{J},$ the Jacobi integral, is the rotating-frame analog of the total energy

Ευστάθεια περιοδικών τροχιών (Hénon 1965)

6.1 Ευστάθεια κατά Henón

4/7/2022

Η ευστάθεια υπολογίζεται με τη μέθοδο του Henón (1965). Ζεκινώντας από τον τετραδιάστατο χώρο των φάσεων (x, y, \dot{x}, \dot{y}) , θεωρούμε τις διαδοχικές τομές μιας τροχιάς με τον άξονα y = 0, κατά τη διεύθυνση των αυξανόμενων y ($\dot{y} > 0$). Από τη Χαμιλτονιανή $H = H(x, 0, \dot{x}, \dot{y}) = h$ μπορούμε να λύσουμε ως προς \dot{y} και έτσι ο χώρος των φάσεων περιορίζεται σε δύο αρχικές συνθήκες (x, \dot{x}) .

Δύο διαδοχικά σημεία τομής στον άξονα y = 0 συνδέονται με έναν μετασχηματισμό $\mathbb{R}^2 \to \mathbb{R}^2$. Για την περίπτωση της περιοδικής τροχιάς έχουμε:

 $x_0 = g_1(x_0, \dot{x}_0)$ $\dot{x}_0 = g_2(x_0, \dot{x}_0)$ Εισάγωντας μια μικρή διαταραχή στις αρχικές συνθήκες παίρνουμε μια τροχιά γειτονική της αρχικής $(x_0 + \Delta x_0, \dot{x}_0 + \Delta \dot{x}_0)$. Οι αρχικές και οι τελικές συνθήκες συνδέονται πάλι μέσω του μετασχηματισμού και έχουμε:

$$x_0 + \Delta x_1 = g_1(x_0 + \Delta x_0, \dot{x}_0 + \Delta \dot{x}_0)$$
$$\dot{x}_0 + \Delta \dot{x}_1 = g_2(x_0 + \Delta x_0, \dot{x}_0 + \Delta \dot{x}_0)$$

Αναπτύσσοντας κατά Taylor και κρατώντας όρους μέχρι πρώτης τάξης έχουμε:

$$\Delta x_1 = \frac{\partial g_1}{\partial x} \Delta x_0 + \frac{\partial g_1}{\partial \dot{x}} \Delta \dot{x}_0$$
$$\Delta \dot{x}_1 = \frac{\partial g_2}{\partial x} \Delta x_0 + \frac{\partial g_2}{\partial \dot{x}} \Delta \dot{x}_0$$

8

4/7/2022

ή αναλυτικά:

$$\Delta x_1 = a\Delta x_0 + b\Delta \dot{x}_0$$
$$\Delta \dot{x}_1 = c\Delta x_0 + d\Delta \dot{x}_0$$

όπου
$$a = \frac{\partial g_1}{\partial x}$$
, $b = \frac{\partial g_1}{\partial \dot{x}}$, $c = \frac{\partial g_2}{\partial x}$, $d = \frac{\partial g_2}{\partial \dot{x}}$

Δεδομένου ότι ο μετασχηματισμός διατηρεί τα εμβαδά, έχουμε

$$ad - bc = 1$$

(3)

Επομένως $\vec{k}_1 = \mathbf{A} \vec{k}_0$, όπου \vec{k}_1 είναι το διάνυσμα $(\Delta x_1, \Delta \dot{x}_1)$ και \vec{k}_0 το διάνυσμα $(\Delta x_0, \Delta \dot{x}_0)$.

Εάν $\{\overrightarrow{\delta}_1, \overrightarrow{\delta}_2\}$ η βάση των ιδιοδιανυσμάτων, μπορούμε να γράψουμε:

$$\overrightarrow{k}_{0} = A_{1} \overrightarrow{\delta}_{1} + A_{2} \overrightarrow{\delta}_{2}$$
$$\overrightarrow{k}_{1} = A_{1} \lambda_{1} \overrightarrow{\delta}_{1} + A_{2} \lambda_{2} \overrightarrow{\delta}_{2}$$

όπου λ_1 και λ_2 οι ιδιοτιμές της Ιακωβιανής **Α**. Η χαρακτηριστική εξίσωση του

όπου λ_1 και λ_2 οι ιδιοτιμές της Ιακωβιανής **Α**. Η χαρακτηριστική εξίσωση του πίνακα **Α**, λόγω της σχέσης (3) είναι

$$\lambda^2 - (a+d)\lambda + 1 = 0$$

Στην περίπτωση που έχουμε |a + d| < 2, έχουμε δύο ρίζες μιγαδικές συζυγείς. Σε αυτήν την περίπτωση $|\lambda_1| = |\lambda_2| = 1$, και η τροχιά χαρακτηρίζεται ευσταθής.

Εάν έχουμε |a + d| > 2 τότε έχουμε δύο πραγματικές ρίζες, με $\lambda_1 \lambda_2 = 1$ και η τροχιά χαρακτηρίζεται ασταθής. Ως δείκτης ευστάθειας ορίζεται ως εκ τούτου η παράμετρος

$$\alpha = \frac{1}{2}(a+d)$$

Για |a| < 1 η περιοδική τροχιά είναι ευσταθής, ενώ για |a| > 1 είναι ασταθής. Το διάγραμμα που δίνει τον δείκτη ευστάθειας α ως συνάρτηση της ενέργειας ονομάζεται διάγραμμα ευστάθειας.

Henon's index

Characteristic equation: $\lambda^2 - (a+d)\lambda + 1 = 0$ $\alpha = 1/2(a+d)$ $|\alpha| < 1$ STABLE $|\alpha| > 1$ UNSTABLE

Ελλειπτικά σημεία

Υπερβολικά σημεία

The role of periodic orbits Order + Chaos (2D case)

Alon over Jenerat FIXED

16

4/7/2022

Fig. 5. Stability curves for a model with a double inner Lindblad resonance (schematically). (---) A=0 (axisymmetric case), $(---) A \neq 0$

4/7/2022 Π.Α. Πάτσης

Φ =Miyamoto disk + Plummer sphere + 3D Ferrers bar

 $H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + \Phi(x, y, z) - \Omega_b(xp_y - yp_x),$ with

 $\Phi(x,y,z)_{eff} = \Phi(x,y,z) - \Omega_b(xp_y - yp_x)$

19

$$\dot{x} = p_x + \Omega_b y, \qquad \dot{y} = p_y - \Omega_b x, \qquad \dot{z} = p_z$$
$$\dot{p}_x = -\frac{\partial \Phi}{\partial x} + \Omega_b p_y, \qquad \dot{p}_y = -\frac{\partial \Phi}{\partial y} - \Omega_b p_x, \qquad \dot{p}_z = -\frac{\partial \Phi}{\partial z}$$

 $\Phi(x, y, z) = \Phi_D + \Phi_S + \Phi_B$

4D space of section, i.c. (x,p_x,z,p_z) in the plane y=0 with $p_y>0$

Application in a 3D rotating galactic potential

$$\rho = \begin{cases} \frac{105M_B}{32\pi abc} (1 - m^2)^2 & \text{for} \quad m \le 1\\ 0 & \text{for} \quad m > 1 \end{cases}$$

where

$$m^2 = \frac{y^2}{a^2} + \frac{x^2}{b^2} + \frac{z^2}{c^2}, \ a > b > c,$$

P.A. Patsis

Ferrers bar, a.b.c =
$$5:1.5:0.6$$

20

4/7/2022

Linear Stability

The relation of the final deviations of this neighboring orbit from the periodic one, with the initially introduced deviations can be written in vector form as: $\vec{\xi} = M \vec{\xi}_0$. Here $\vec{\xi}$ is the final deviation, $\vec{\xi}_0$ is the initial deviation and <u>M</u> is a 4 × 4 matrix, called the monodromy matrix. It can be shown that the characteristic equation is written in the form $\Lambda^4 + \alpha \lambda^3 + \beta \lambda^2 + \alpha \lambda + 1 = 0$. Its solutions $(\lambda_i, i = 1, 2, 3, 4)$ obey the relations $\lambda_1 \lambda_2 = 1$ and $\lambda_3 \lambda_4 = 1$ and for each pair we can write:

$$\lambda_i, 1/\lambda_i = \frac{1}{2} [-b_i \pm (b_i^2 - 4)^{\frac{1}{2}}],$$

where $b_i = 1/2 (\alpha \pm \Delta^{1/2})$ and stability indices
$$\Delta = \alpha^2 - 4(\beta - 2).$$

21

P.A. Patsis

motion is stable when all the roots of (44) are complex conjugate lying on the unit circle, and this happens when the following three inequalities hold:

(49)

$$\Delta > 0, \quad |b_1| < 2, \quad |b_2| < 2.$$

In all other cases the motion is unstable.

Complex instability and the x1v1 family

The structure of phase space in 3D systems visualization as in Patsis & Zachilas 1994 IJBC

Stability: Katsanikas & P. 2011

BIO reword For nacupy !!

Simple Instability: P & Katsanikas 2014

Double Instability P. & Zachilas 1994 IJBC 4, 1399

What do we know about the neighborhood of complex unstable periodic orbits?

Contopoulos, Farantos, Papadaki, Polymilis 1994

Katsanikas, Patsis, Contopoulos

"confined torus" Pfenniger 1984

Complex instability

71 04 0 J.L. M.L. X 1

FIXED 175 PEriod

4/7/2022

Complex instability – confined torus

4/7/2022

NGC 4710, α =12^h 49^m 38.9 , δ =+15° 9′ 56″

This natural-color photo was taken with the Hubble Space Telescope's Advanced Camera for Surveys on January 15, 2006

4/7/2022

P.A. Patsis

or area

N-body peanuts II

4/7/2022

s/s from GADGET3 N-body simulation (Patsis & Naab 2022 – in preparation)

2 x 10^6 particles (DM, stars, gas, newborn stars)

32

NGC352 (Aristarchos telescope, Helmos, Greece)

N-body s/s (Athanassoula 2017)

1. Where does the b/p start?

the "x1v1" scenario

non av en l. Democratio

X E D PT 5

CASCADE FRIOD FORSING FORSE

38

4/7/2022

What can we build with orbits close to Δ p.o. ? PhyD 42933050 (2022)

• + T. Manos, H. Skokos, L. Chaves-Velasquez, I. Puerari

Orbits close to Δ p.o. in the first region. "10%" perturbations

GALI2 index: Skokos, Bountis Antonopoulos 2007

JOKY LIKE A MESS

Orbits close to Δ p.o. in the first region.

10 reword tor nach pv /

Orbits close to Δ p.o. in the SECOND region. S: JUST before the S $\rightarrow \Delta$ transition

EJ=-0.26753617

Orbits close to Δ p.o. in the SECOND region. Δ : JUST AFTER the S $\rightarrow \Delta$ transition

EJ=-0.26743617 Δx =0.001x0(x1v1) and

 $\Delta x = 10^{-8} x0(x1v1)$

Orbits close to Δ p.o. in the SECOND region. Δ : CLOSE to the $\Delta \rightarrow$ S transition. The role of the ENVIRONMENT

 $EJ=-0.23283617 \Delta x=10^{-8}x0(x1v1)$

The same situation appears for smaller EJ (without spirals)

Orbits close to Δ p.o. in the SECOND region. Δ : JUST AFTER the $\Delta \rightarrow$ S transition.

$EJ=-0.23234 \Delta x=0.0015x0(x1v1)$ and

600# and then chaos

PERLAS potential. Similar behavior

• The small Δ interval can be ignored

• In the large interval (e.g. EJ=-1208.228, Δx=0.001x0)...

67# in the middle Large dynamical time scales

PERLAS potential. Similar behavior

Perturbed 10% in x

CONCLUSIONS -

In a S→Δ→S transition there is a continuity in the evolution of the phase space in the immediate neighborhood of the periodic orbits:
(S) shrinking of tori → (S) disky tori → (Δ) confined tori w. spirals →
(Δ) clouds w. spirals → (S) reverse evolution
(this is the second example we are aware of, where the evolution of the phase space structure foretells an impending stability transition of a specific kind)

QUINT THAPPENS FOR X > 16.77 Point of account of 2 mon LOCK > LIKE A MESS

Early q-p x1 orbits (P&K2014)

x1v1

CONCLUSIONS

• Δ does not define the phase space structure

• The role of the close environment plays a significant role (even for trapping in sticky zones)

• Especially in PERLAS, a Δ region of x1v1 may rather increase locally the dispersion of velocities (weaken the spiral?) than destroy the pattern

QUINT TIMPPENIS FOR X > 16.77 Point of account of 2mm LOCK > LIKE A MESS!

MNRAS 509, 1995 (2022) Orbits in time dependent potentials (+Manos, Skokos)

Figure 14. The (z, p_z) projection of the 4D phase space of x1 orbits perturbed in the p_z -direction, at $E_J = -0.41$. We indicate with black and grey '*' symbols the location of the x1v1 and x1v1' p.o., respectively. Red and green '×' symbols indicate the two branches of x1v2. The '**A**' at $(z, p_z) = (0.1, 0.42)$ marks the location of the p.o. x1mul2. Consequents corresponding to parts of the orbits that are plotted in other figures are marked with \odot symbols.

P&K14

Popla with discrete

Thomas a lapping

QUINT FIAPPENS FOR X > 16.77 Point of account of 2mm LOCK > LIKE A MESS