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I shall review the basic aspects of quantum chaos (wave chaos) [1,2] in general (mixed-
type) Hamiltonian systems with divided phase space, where regular regions containing the
invariant tori coexist with the chaotic regions [3,4]. The quantum evolution of classically
chaotic bound systems does not possess the sensitive dependence on initial conditions, and
thus no chaotic behaviour occurs, as the motion is always almost periodic. However, the
study of the stationary solutions of the Schrédinger equation in the quantum phase space
(Wigner functions or Husimi functions [5,6]) reveals precise analogy of the structure of the
classical phase portrait. In classically integrable regions the spectral (energy) statistics
is Poissonian, while in the ergodic chaotic regions the random matrix theory applies.
One important indicator of the level statistics is the probability density (level spacing
distribution) P(.S) to find successive levels on a distance S. In the integrable case the
level spacing distribution is exponential P(S) = exp(—S), while in the chaotic case it is
well described by the Wigner distribution

P(S) = - exp(———). (1)

If we have the mixed-type classical phase space, in the semiclassical limit (short wavelength
approximation) the spectrum is composed of Poissonian level sequence supported by the
regular part of the phase space, and chaotic sequences supported by classically chaotic
regions, being statistically independent of each other, as described by the Berry-Robnik
distribution [7-11]. In quantum systems with discrete energy spectrum the Heisenberg
time ty = 2nh/AFE, where AE is the mean level spacing (inverse energy level density), is
an important time scale. The classical transport time scale t7 (transport time) in relation
to the Heisenberg time scale ty (their ratio is the parameter o = ty/tr ) determines
the degree of localization of the chaotic eigenstates[12-19], whose measure A is based
on the information entropy. We show that A is linearly related to the normalized inverse
participation ratio. We study the structure of quantum localized chaotic eigenstates (their
Wigner and Husimi functions) and the distribution of localization measure A. The latter
one is well described by the beta distribution, if there are no sticky regions in the classical
phase space. Otherwise, they have a complex nonuniversal structure. We show that the
localized chaotic states display the fractional power-law repulsion between the nearest
energy levels where P(S) goes like o< S# for small S, where 0 < 8 < 1, and g = 1



corresponds to completely extended states, while § = 0 to the maximally localized states.
B goes from 0 to 1 when « goes from 0 to co. [ is a function of (A), as demonstrated in
the quantum kicked rotator, the stadium billiard, a mixed-type billiard and in the Dicke

model [20,21].
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